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We are currently in the midst of Earth’s sixth extinction event, and measur-
ing biodiversity trends in space and time is essential for prioritizing limited
resources for conservation. At the same time, the scope of the necessary bio-
diversity monitoring is overwhelming funding for professional scientific
monitoring. In response, scientists are increasingly using citizen science
data to monitor biodiversity. But citizen science data are ‘noisy’, with redun-
dancies and gaps arising from unstructured human behaviours in space and
time. We ask whether the information content of these data can be maxi-
mized for the express purpose of trend estimation. We develop and
execute a novel framework which assigns every citizen science sampling
event a marginal value, derived from the importance of an observation to
our understanding of overall population trends. We then make this frame-
work predictive, estimating the expected marginal value of future
biodiversity observations. We find that past observations are useful in fore-
casting where high-value observations will occur in the future. Interestingly,
we find high value in both ‘hotspots’, which are frequently sampled
locations, and ‘coldspots’, which are areas far from recent sampling,
suggesting that an optimal sampling regime balances ‘hotspot’ sampling
with a spread across the landscape.
1. Introduction
Assessing biodiversity trends in space and time is essential for conservation
[1–5]. Reliable biodiversity trend estimates, at multiple spatial scales [6],
allow us to track our global progress in curbing biodiversity loss while mana-
ging our scarce conservation resources [1]. Unsurprisingly, reliable trend
estimates are best derived from long-term [7,8], well-designed surveys, carried
out over a wide spatial and temporal scale [1,9,10]. But scientific funding for
long-term ecological and conservation research is failing to keep pace with con-
servation needs [11,12]. Increasingly, government agencies, scientific researchers
and conservationists are turning to citizen science data to help inform the state
of biodiversity at local [13–16], regional [17,18] and global scales [19–21].

Citizen science—the cooperation between scientific experts and non-
experts—is an incredibly diverse and rapidly expanding field [22–24]. Projects
generally fall along a continuum based on the level of associated structure
[25,26], ranging from unstructured (e.g. opportunistic or incidental projects
which require little to no training; iNaturalist) to structured (e.g. projects with
specific objectives, rigorous protocols and survey design; UK Butterfly
Monitoring Scheme). The level of structure, in turn, influences the degree of
redundancies and gaps in the data, as well as the overall data quality of a par-
ticular project. For instance, observer skill [27], number of participants in a
group and the technological capabilities of a participant may influence the
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Figure 1. The ultimate goal in understanding population trends is to minimize the uncertainty for a population trend model, providing more robust measures of
population trends. Shown here are four example population trend models, based on eBird data between 2010 and 2018, for noisy miner (top left), hardhead (top
right), masked lapwing (bottom left) and crested pigeon (bottom right), in the Greater Sydney Region, Australia. Each model incorporates approximately 26 000
biodiversity sampling events. (Online version in colour.)
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data collected by some, but not necessarily all, citizen science
projects. Generalizable among citizen science projects, how-
ever, are various redundancies and gaps (i.e. spatial and
temporal biases) [28,29]. Observers submitting observations
on weekends [30], sampling near roads and human settle-
ments [31], and visiting known ‘hotspots’ for biodiversity
[32] are all examples of how unstructured human behaviour
leads to redundancies and gaps in citizen science data [33].
These biases are not restricted to citizen science projects.
Indeed, our historical understanding of biodiversity is also
biased due to variation in sampling effort, evident from natu-
ral history collections [28,34]. Many sampling methods
have been proposed to optimize biodiversity sampling
by professional scientists [35–39], frequently dependent
on spatial scale [40]. While structured citizen science pro-
jects often adapt some aspects of optimal sampling in
their methods (e.g. stratified sampling), little attention
has been given to optimal sampling in unstructured citizen
science projects [1].

One of the reasons that optimal sampling has been largely
ignored in unstructured citizen science projects is because
redundancies and gaps in the data are seen as a ‘necessary
hurdle’ [41]. Also, in the case of broad-scale biodiversity
data collected at large voluminous scales, the biases can gen-
erally be accounted for statistically [42,43]; for instance, by
filtering or subsetting data [44], pooling multiple data sources
[45], or machine learning and hierarchical clustering tech-
niques [31,46]. Indeed, despite known biases, citizen science
data have increased our knowledge of species distribution
models [47,48], niche breadth [49], biodiversity [20,50],
phenological research [51,52], invasive species detection
[53,54] and phylogeographical research [55,56].

Despite the potential outcomes from citizen science data,
estimating biodiversity trends is perhaps the most important,
given the current need to efficiently and effectively monitor
biodiversity [1,4,5]. From a conservation perspective, the
goal is relatively straightforward: provide robust measures
of species’ trends through time, a critical component of the
IUCN Red List index [57]. Estimating trends with citizen
science data is best done with data from structured projects
(i.e. less biases to account for, generally resulting in greater
certainty) [18]. But unstructured and semistructured projects
are increasingly harnessed for trend detection [10,58–62]. The
robustness of these trend estimates is critical, and the goal
should be to continuously decrease the uncertainty surround-
ing these estimates (e.g. figure 1). Unsurprisingly, uncertainty
is generally related to the number of observations, as well as
appropriate sampling, through time (e.g. https://github.
com/coreytcallaghan/optimizing-citizen-science-sampling/
blob/master/Figures/Noisy_miner_gif.gif).

The number of citizen science projects which are focused
on ecological and environmental monitoring is increasing
[14,24], highlighting the potential that citizen science holds
for the future of ecology, conservation and natural resource
management [20,63–65]. But a major obstacle in the future
use of citizen science data remains understanding how to
best extract information from ‘noisy’ citizen science datasets
[41]. As mentioned, this noise from citizen science [29]
can sometimes be alleviated using ‘big data’ statistical
approaches [31], but this is most applicable for data originating
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from large, successful citizen science projects—with lots of
data. Even with big data, this is not always possible. But
what about projects that are just beginning? Or projects focus-
ing on taxa that are less popular with the general public
[66,67]? Are there optimal strategies for sampling in space
and time for estimating biodiversity trends?

Here, we investigate these questions with a specific objec-
tive: assess how spatial and temporal sampling by citizen
scientists influences trend detection of biodiversity. Our
approach is dynamic: we are interested in the parameters
that influence the value of a given citizen science sampling
event in both time and space. To do this, we (i) used 25 995
eBird citizen science sampling events, (ii) analysed linear
trends for 235 species, (iii) calculated a measure of statistical
leverage (i.e. marginal value)—the influence a given obser-
vation has on the population trend model of a species—for
all checklists for each species, (iv) summed the leverages on
a given checklist to provide a measure of marginal value for
every checklist (i.e. the cumulative value/importance of a
sampling event to inform our total knowledge of species’
trends, across many species), (v) tested specific predictions
(appendix 1 in the electronic supplementary material) which
may influence the marginal value of a citizen science sampling
event [33], and (vi) used these associations to predict the
expected marginal value on a daily basis.
2. Methods
We tested our predictions throughout the Greater Sydney Region
(approx. 12 400 km2), delineating grids across the region of vary-
ing size (5, 10, 25 and 50 km2), where a grid represented a ‘site’.
We used the R statistical environment [68] to carry out all ana-
lyses, relying heavily on the tidyverse [69], ggplot2 [70] and sf
[71] packages.

In order to test our predictions, we used the eBird basic data-
set (version ebd—relDec—2018; available at https://ebird.org/
data/download), subsetting the data between 1 January 2010
and 31 December 2018. eBird is a successful citizen science pro-
ject with greater than 600 million observations contributed by
greater than 400 thousand participants, globally [15,72,73].
eBird relies on volunteer birdwatchers who collect data in the
form of ‘checklists’—a list of all species identified (audibly or
visually) for given spatio-temporal coordinates. eBird relies on
an extensive network of regional reviewers who are local experts
of the avifauna [74] to ensure data quality [72].
(a) Trend detection model
We first filtered the eBird basic dataset [51,75,76], by the following
criteria: (i) we only included complete checklists, (ii) we only
included terrestrial bird species, (iii) we removed any nocturnal
checklists, (iv) we only included checklists which were greater
than 5 min and less than 240 min in duration, (v) we only included
checklists which travelled less than 5 km or covered less than
500 Ha, and (vi) we only included checklists which had greater
than four species on it, as checklists with less than four species
were likely to be targeted searches for particular species [58,77].

For any species with more than 50 observations (n = 235), we
fit a generalized linear model using the ‘glm’ function in R, based
on presence/absence with a binomial family distribution [58,60].
The models consisted of a continuous term for day, beginning 1
January 2010, and a categorical term for county, providing a
spatial component to the models (e.g. figure 1). We also included
an offset term for the number of species seen on a given eBird
checklist, accounting for temporal and spatial effort of that
checklist [77]. This specific linear model may not be suitable
for species which have varying detection probabilities through-
out the full-annual cycle, but a large suite of models is possible
in our framework. A total of 25 995 sampling events (i.e. eBird
checklists) was used to fit each model. For the top 50 species in
our analysis, we further investigated the robustness of these
trend estimates in respect to sample size (appendix 2 in the
electronic supplementary material).
(b) Statistical leverage
Statistical leverage measures the influence of a particular obser-
vation on the predicted relationship between the dependent
and independent variables [78]. In other words, it is a measure
of how much a given observation affects the statistical model.
In our instance, as is likely to be the case for all trend detection
models, we had multiple predictor variables. Because for trend
detection, we are interested in one specific model parameter—
the temporal component—dfBeta rather than Cook’s distance is
appropriate [79]. dfBeta measures the change to one model par-
ameter, after omitting the ith observation from the dataset
[79,80]. It follows the formula

dfBeta ¼ b̂� bi ¼
(X0X)�1Xiri

1� hi
,

where X is the predictor variable matrix, r the residual vector, i h
the ith diagonal member and i x the ith line of matrix X. The
value of dfBeta tends to decline with an increase in the number
of observations as the trend becomes well understood.

In our case, every sampling event for each species received a
dfBeta value (i.e. each species received 25 995 measures of
dfBeta), using the ‘dfBetas’ function from R [68]. The measure
of statistical leverage, then, of a given checklist was the sum of
the absolute value of the dfBeta measures for each species (i.e.
the sum of all 235 dfBetas). This measure of statistical leverage
was thus a measure of a checklist’s influence in understanding
cumulative species’ trends throughout the Greater Sydney
Region, and accordingly represented the marginal value of that
particular checklist. Failing to observe a species produces a
dfBeta which can be quite important in detecting a species decline.
(c) Parameter calculation
After our model was fit from 2010 to 2018, we calculated the pre-
dicted parameters of interest for each day in 2018 (n = 365). For
each individual grid, at each of the grain sizes, we dynamically
calculated the following parameters, related to our predictions
(appendix 1 in the electronic supplementary material): (i)
whether a grid cell had ever been sampled, (ii) the distance to
the nearest sampled grid cell, (iii) the median sampling interval
of a grid cell, (iv) the median sampling interval of the nearest
sampled grid cell, (v) days since the last sample in a grid cell,
(vi) the duration of sampling in a grid cell (most recent sample
minus the earliest sampled date), and (vii) the number of
unique sampling days within the grid cell. Note that these
parameters depend on the sampling in the days prior to
that particular observation and do not consider the sampling in
subsequent days.

We then subsetted the leverage calculations (see above) for
each of the days in 2018, given we knew where people sampled,
relative to the parameters for each of the grids on that day. We
ran a linear regression for each of the different grain sizes con-
sidered in the analysis to investigate which parameters could
forecast checklist influence. Prior to modelling, duration was
highly correlated with median sampling interval for the majority
of the grain size analyses, and as such, was excluded from
consideration. Given the parameters’ correlation varied among
grain sizes (appendix 3 in the electronic supplementary
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material), we needed to ensure a robust, and simple model. All
variables were log-transformed and then standardized prior to
modelling, ensuring that the effect sizes of the given parameters
were meaningful. The response variable, dfBeta (i.e. marginal
value) was log-transformed prior to modelling to meet model
assumptions. Thus, the final model included a log-transformed
dfBeta response variable, regressed against log-transformed stan-
dardized median sampling interval, number of days sampled,
days since the last sample, distance to the nearest sampled
neighbour, and the neighbour’s median sampling interval.

After our model was fitted, we used the ‘augment’ function
from the broom package [81] to predict the expected leverage
for every grid cell in the Greater Sydney Region, for every day.
For grid cells which were unsampled, we assigned them the
mean of the sampled grid cells, based on our lack of evidence
that unsampled cells were significantly more valuable than
sampled cells. Where one grid had multiple predicted leverages
(i.e. where a grid had more than one checklist in a day), we ran-
domly sampled to one of these expected leverages. This
prediction process was repeated for every day of 2018.
3. Results and discussion
(a) Tests of predictions
We found weak evidence that visiting an unsampled site was
marginally more valuable than visiting an already sampled
site, but we did find that as grain size increases the impor-
tance of sampling unsampled sites also increases. There
was no statistical clarity for the 5 km ( p = 0.669; effect
size =−0.25 ± 0.58) and 10 km ( p = 0.093; effect size = 1.27 ±
0.76) grain sizes, but there was for the 25 km ( p = 0.035;
effect size = 2.98 ± 1.42) grain size. At the 50 km grain size,
this test was not possible because all sites had been sampled.
These results suggest that stratified sampling—an approach
which aims for equal sampling among sites [38,57]—is not
necessarily the most appropriate approach for detecting
trends using citizen science data. In other words, citizen
scientists are likely already sufficiently sampling biodiversity
in space: they appropriately identify and sample ‘hotspots’ in
space that should receive the most sampling attention. But
the effect of citizen scientists visiting ‘popular’ locations
(e.g. spots known for their bird diversity) could exclude the
discovery of other known ‘hotspots’ in the same region.

For those sampled sites, however, we found a generally
positive relationship between a number of our predicted par-
ameters (detailed predictions can be found in appendix 1 in
the electronic supplementary material) and the marginal
value of a sampling event (figure 2). Full summary statistics
for each of our predictors can be found in appendix 4 in the
electronic supplementary material, but the range, median
and interquartile range, respectively, can be found in parenth-
eses after the referenced parameter. The number of unique
days sampled (5 km: 1–1222, 25, 228; 10 km: 1–1894,
79, 424; 25 km: 1–2946, 1103, 2071.5; 50 km: 11–3004, 2284,
808)—probably represented from known ‘hotspots’ identified
by citizen scientists—had the strongest, positive, effect size,
and this was robust to grain size comparisons. The median
sampling interval (5 km: 1–2450, 31, 124; 10 km: 1–1401, 11,
57; 25 km: 1–821, 1, 5; 50 km: 1–193, 1, 0) was also strongly
associated with high value samples, with an exception at
the 25 km grain size. Distance to the nearest sampled site
(5 km: 1.9–19.7, 5, 2.1; 10 km: 0–23.1, 10, 0.7; 25 km:
14.8–25, 22, 4.3; 50 km: 32.3–45.1, 37.5, 3.6) and the nearest-
neighbour sampling interval (5 km: 1–2450, 43.5, 170;
10 km: 1–1401, 14, 54; 25 km: 1–821, 2, 5; 50 km: 1–1, 1, 0)
influenced the value of a sampling event less than the other
parameters. Surprisingly, the number of days since the last
sample (5 km: 1–2935, 39, 228; 10 km: 1–1645, 10, 86; 25 km:
1–693, 1, 4; 50 km: 1–316, 1, 0), while positively associated,
had less influence than other parameters. See figure 2 for
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standardizedparameter estimates (i.e. effect sizes). The fact that
days since last sample had a lower effect size than both the
median sampling interval and the number of unique days
sampled, highlights the value of ‘revisiting’ a site (i.e. ‘hotspot’)
in order to extract the maximum amount of information.

The ‘history’ of a site is particularly important while con-
sidering whether to sample that site: the number of unique
days sampled was the strongest predictor for all but the
25 km (second strongest) grain size, suggesting that obser-
vations from sites with a long time series are relatively
more valuable. Because sites with larger median sampling
intervals were positively associated with the marginal value
of a citizen science observation, a secondary goal could be
to decrease (i.e. left-shift the distribution) the median
sampling interval of sites by targeting sites with the largest
median sampling intervals; providing some structure to
unstructured citizen science projects.

We found generally consistent results, albeit with variation
in parameters: no predictor was consistently significant across
all grain sizes. Nevertheless, our findings appear to be robust
to spatial scale, at least within a regional level. It is critical to
track biodiversity trends at multiple spatial scales [6], as biodi-
versity estimates sometimes change dependent on the spatial
scale [40]. In comparison with other regions in Australia, the
distribution of sampled grids in Sydney is generally simi-
lar—many grids unsampled or sampled only a few times,
and then large variation among the rest of the grids (appendix
5 in the electronic supplementary material). Different regions
have the same underlying ‘starting point’ in the current
sampling regime, suggesting our results are generalizable
among regions. Although this may only be applicable at a
regional scale, and future work should further investigate
these patterns at large, continental scales, where the grain
size is proportional to the spatial scale of the study. For
example, within all of Australia, it is likely that unsampled
regions will be significantly more important because there
are many ‘gaps’ in the data, and effort could thus be directed
from well sampled regions to unsampled regions.
(b) Applications of our predictions
Providing dynamic feedback to citizen science participants
has proved successful for many citizen science projects
[44,82,83]. This feedback is generally in the form of leader-
boards, presenting the number of submissions or number of
unique species someone has contributed [84]. But leader-
boards tend to focus on outputs, incentivizing finding
rather than looking, leading to perverse outcomes related to
the redundancies and gaps in citizen science data. We
sought to develop an outcome-based incentive by using our
fitted models to predict the expected value of a given citizen
science observation, dynamically, for any given day (e.g.
figure 3; https://github.com/coreytcallaghan/optimizing-
citizen-science-sampling/blob/master/Figures/dynamic_
map.gif ). This approach required us to analyse data from the
past first, using a model with all observations for 2018, based
on statistical leverage calculated from 2010 to 2018, in order
to predict the expected marginal value for any given
day. We envision a dynamic approach (https://github.
com/coreytcallaghan/optimizing-citizen-science-sampling/
blob/master/Figures/dynamic_map.gif ) in future citizen
science projects, which would ultimately guide participants
to sites which should be sampled on any given day—or in
a given week, month or year. In this instance, leaderboards
would move past numbers of species or submissions and
could be derived based on a participant’s cumulative value
to the citizen science dataset. Instead of participants preferen-
tially chasing specific species, this approach would guide
participants to the sites with the highest expected marginal
value for the biodiversity dataset. For example, we imagine
visitor centres across the world at national parks or urban
greenspaces providing their visitors on any given day a loca-
lized map showing which trail someone should visit if they
are interested in contributing the greatest value to that
park’s biodiversity knowledge, through citizen science. The
global pull of ecotourism [85] is increasing exponentially,
creating the potential for people to contribute to local biodiver-
sity knowledge in areas that are traditionally undersampled,
and with this framework, the collective effort of citizen
scientists can be maximized.

Another critical component to efficiently direct effort and
maximize the collective effort of citizen scientists is by under-
standing critical thresholds necessary for reliable estimates of
trend detection. If the minimum number of sampling events
for a region is understood, then citizen science effort could
appropriately be directed to areas where these critical
thresholds are not yet met. We preliminarily found that for
the top 50 species in our analysis, approximately 11 700
checklists were necessary for a 50% reduction/convergence
in the slope estimate based on our model (appendix 2 in
the electronic supplementary material). This result is compar-
able with a study in the USAwhich found that approximately
10 000 eBird checklists were necessary to provide reliable
trend estimates [60]. Future work should investigate critical
thresholds for biodiversity analyses and how these interact
with efficiently directing citizen science effort.

We focused our framework on a specific statistical out-
come: trend detection. Many other ecological outcomes
arise from citizen science datasets, including species distri-
bution models [47,48], phylogeographical research [55,56],
invasive species detection [53,54] or phenological research
[51,52]. Each potential outcome will have different optimal
sampling strategies in space and time, probably with
nuanced trade-offs between outcomes. For example, an
intended outcome of a species distribution model would be
likely to place greater value on observations from unsampled
sites [86] than for species trend detection. But these different
outcomes can still be quantified in the same framework we
introduce here: this framework could be applied to a wide
suite of statistical models—including for different taxa and
including more complicated trend analysis accounting for
intra-annual varying detection probabilities. The key piece
of information is some form of statistical leverage that can
be calculated from a potential statistical model.
(c) Conclusions
Since eBird’s inception in 2002, citizen scientists have collec-
tively contributed greater than 30 million effort hours. And
this is only one citizen science project, focused on birds.
Our approach should be tested for other taxonomic groups,
ensuring generalizability. Clearly, the cumulative effort put-
forth by citizen scientists is immense; arguably, citizen
science will continue to shape the future of ecology and con-
servation—as it has substantially for the past couple of
centuries [63]—with an increasingly critical role in
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monitoring of biodiversity [20,65]. But we need to look
towards the future. Are there mechanisms we can put in
place now which will increase our collective knowledge
gleaned from citizen science datasets for biodiversity in the
future? We highlight general rules which could help guide
citizen science participants to better sampling in space and
time: the number of unique days sampled and the largest
median sampling intervals both positively correlate with

https://github.com/coreytcallaghan/optimizing-citizen-science-sampling/blob/master/Figures/dynamic_map.gif
https://github.com/coreytcallaghan/optimizing-citizen-science-sampling/blob/master/Figures/dynamic_map.gif


royalsocietypublishing.org/jo

7
the marginal value of a citizen science observation. Moreover,
we demonstrate a framework which citizen science
projects can implement to better optimize their sampling
designs, which can be tailored to specific citizen science
project goals.

Data accessibility. All eBird data are freely available for download
(https://ebird.org/data/download), but the necessary portion of
the eBird basic dataset (i.e. for the Greater Sydney Region), along
with spatial data and code to reproduce our analyses, are available
at: https://doi.org/10.5281/zenodo.3402307.
Authors’ contributions. C.T.C., W.K.C., A.G.B.P., J.J.L.R. and R.E.M. con-
ceived the study. C.T.C. and W.K.C. carried out the analysis and
wrote the first draft of the manuscript. All authors contributed to
editing and revising the manuscript.

Competing interests. We declare we have no competing interests.

Funding. We received no funding for this study.
Acknowledgements. We thank the countless eBird contributors who are
continuously making open-access bird observation data available,
and the eBird team at the Cornell Lab for curating this valuable data-
set. We also thank two anonymous reviewers who helped improve
the manuscript.
 urnal/rspb

P

References
roc.R.Soc.B
286:20191487
1. Harrison PJ, Buckland ST, Yuan Y, Elston DA, Brewer
MJ, Johnston A, Pearce-Higgins JW. 2014 Assessing
trends in biodiversity over space and time using the
example of British breeding birds. J. Appl. Ecol. 51,
1650–1660. (doi:10.1111/1365-2664.12316)

2. Wilson CD, Roberts D. 2011 Modelling distributional
trends to inform conservation strategies for an
endangered species. Divers. Distrib. 17, 182–189.
(doi:10.1111/j.1472-4642.2010.00723.x)

3. McMahon SM et al. 2011 Improving assessment and
modelling of climate change impacts on global
terrestrial biodiversity. Trends Ecol. Evol. 26,
249–259. (doi:10.1016/j.tree.2011.02.012)

4. Honrado JP, Pereira HM, Guisan A. 2016 Fostering
integration between biodiversity monitoring and
modelling. J. Appl. Ecol. 53, 1299–1304. (doi:10.
1111/1365-2664.12777)

5. Yoccoz NG, Nichols JD, Boulinier T. 2001 Monitoring
of biological diversity in space and time. Trends
Ecol. Evol. 16, 446–453. (doi:10.1016/S0169-
5347(01)02205-4)

6. Soberón J, Jiménez R, Golubov J, Koleff P. 2007
Assessing completeness of biodiversity databases at
different spatial scales. Ecography 30, 152–160.
(doi:10.1111/j.0906-7590.2007.04627.x)

7. Lindenmayer DB et al. 2012 Value of long-term
ecological studies. Austral Ecol. 37, 745–757.
(doi:10.1111/j.1442-9993.2011.02351.x)

8. Magurran AE, Baillie SR, Buckland ST, Dick JM,
Elston DA, Scott EM, Smith RI, Somerfield PJ,
Watt AD. 2010 Long-term datasets in biodiversity
research and monitoring: assessing change in
ecological communities through time. Trends Ecol.
Evol. 25, 574–582. (doi:10.1016/j.tree.2010.06.016)

9. Vellend M et al. 2017 Estimates of local biodiversity
change over time stand up to scrutiny. Ecology 98,
583–590. (doi:10.1002/ecy.1660)

10. Kery M, Dorazio RM, Soldaat L, Van Strien A,
Zuiderwijk A, Royle JA. 2009 Trend estimation in
populations with imperfect detection. J. Appl. Ecol. 46,
1163–1172. (doi:10.1111/j.1365-2664.2009.01724.x)

11. Bakker VJ, Baum JK, Brodie JF, Salomon AK, Dickson
BG, Gibbs HK, Jensen OP, Mcintyre PB. 2010 The
changing landscape of conservation science funding
in the United States. Conserv. Lett. 3, 435–444.
(doi:10.1111/j.1755-263X.2010.00125.x)

12. Ríos-Saldaña CA, Delibes-Mateos M, Ferreira CC.
2018 Are fieldwork studies being relegated to
second place in conservation science? Glob. Ecol.
Conserv. 14, e00389. (doi:10.1016/j.gecco.2018.
e00389)

13. Callaghan CT, Gawlik DE. 2015 Efficacy of eBird data
as an aid in conservation planning and monitoring.
J. Field Ornithol. 86, 298–304. (doi:10.1111/jofo.
12121)

14. Theobald EJ et al. 2015 Global change and local
solutions: tapping the unrealized potential of citizen
science for biodiversity research. Biol. Conserv. 181,
236–244. (doi:10.1016/j.biocon.2014.10.021)

15. Sullivan BL et al. 2017 Using open access
observational data for conservation action: a case
study for birds. Biol. Conserv. 208, 5–14. (doi:10.
1016/j.biocon.2016.04.031)

16. Loss SR, Loss SS, Will T, Marra PP. 2015 Linking
place-based citizen science with large-scale
conservation research: a case study of bird-building
collisions and the role of professional scientists. Biol.
Conserv. 184, 439–445. (doi:10.1016/j.biocon.2015.
02.023)

17. Barlow K, Briggs P, Haysom K, Hutson A, Lechiara N,
Racey P, Walsh AL, Langton SD. 2015 Citizen science
reveals trends in bat populations: the National Bat
Monitoring Programme in Great Britain. Biol. Conserv.
182, 14–26. (doi:10.1016/j.biocon.2014.11.022)

18. Fox R, Warren MS, Brereton TM, Roy DB, Robinson
A. 2011 A new Red List of British butterflies. Insect
Conserv. Divers. 4, 159–172. (doi:10.1111/j.1752-
4598.2010.00117.x)

19. Chandler M et al. 2017 Contribution of citizen
science towards international biodiversity
monitoring. Biol. Conserv. 213, 280–294. (doi:10.
1016/j.biocon.2016.09.004)

20. Pocock MJ et al. 2018 A vision for global
biodiversity monitoring with citizen science. Adv.
Ecol. Res. 59, 169–223. (doi:10.1016/bs.aecr.2018.
06.003)

21. Cooper CB, Shirk J, Zuckerberg B. 2014 The invisible
prevalence of citizen science in global research:
migratory birds and climate change. PLoS ONE 9,
e106508. (doi:10.1371/journal.pone.0106508)

22. Jordan R, Crall A, Gray S, Phillips T, Mellor D. 2015
Citizen science as a distinct field of inquiry.
Bioscience 65, 208–211. (doi:10.1093/biosci/biu217)

23. Newman G, Wiggins A, Crall A, Graham E, Newman
S, Crowston K. 2012 The future of citizen science:
emerging technologies and shifting paradigms.
Front. Ecol. Environ. 10, 298–304. (doi:10.1890/
110294)

24. Pocock MJ, Tweddle JC, Savage J, Robinson LD, Roy
HE. 2017 The diversity and evolution of ecological
and environmental citizen science. PLoS ONE 12,
e0172579. (doi:10.1371/journal.pone.0172579)

25. Kelling S et al. 2019 Using semistructured surveys to
improve citizen science data for monitoring
biodiversity. Bioscience 69, 170–179. (doi:10.1093/
biosci/biz010)

26. Welvaert M, Caley P. 2016 Citizen surveillance for
environmental monitoring: combining the efforts of
citizen science and crowdsourcing in a quantitative
data framework. Springerplus 5, 1890. (doi:10.1186/
s40064-016-3583-5)

27. Kelling S et al. 2015 Can observation skills of citizen
scientists be estimated using species accumulation
curves? PLoS ONE 10, e0139600. (doi:10.1371/
journal.pone.0139600)

28. Boakes EH, McGowan PJ, Fuller RA, Chang-qing D,
Clark NE, O’Connor K, Mace GM. 2010 Distorted
views of biodiversity: spatial and temporal bias in
species occurrence data. PLoS Biol. 8, e1000385.
(doi:10.1371/journal.pbio.1000385)

29. Bird TJ et al. 2014 Statistical solutions for error and
bias in global citizen science datasets. Biol. Conserv.
173, 144–154. (doi:10.1016/j.biocon.2013.07.037)

30. Courter JR, Johnson RJ, Stuyck CM, Lang BA, Kaiser
EW. 2013 Weekend bias in Citizen Science data
reporting: implications for phenology studies.
Int. J. Biometeorol. 57, 715–720. (doi:10.1007/
s00484-012-0598-7)

31. Kelling S, Fink D, La Sorte FA, Johnston A, Bruns NE,
Hochachka WM. 2015 Taking a ‘big data’ approach to
data quality in a citizen science project. Ambio 44,
601–611. (doi:10.1007/s13280-015-0710-4)

32. Geldmann J, Heilmann-Clausen J, Holm TE, Levinsky
I, Markussen B, Olsen K, Rahbek C, Tøttrup AP. 2016
What determines spatial bias in citizen science?
Exploring four recording schemes with different
proficiency requirements. Divers. Distrib. 22,
1139–1149. (doi:10.1111/ddi.12477)

33. Callaghan CT, Rowley JJL, Cornwell WK, Poore AG,
Major RE. 2019 Improving big citizen science data:
moving beyond haphazard sampling. PLoS Biol. 17,
e3000357. (doi:10.1371/journal.pbio.3000357)

34. Pyke GH, Ehrlich PR. 2010 Biological collections and
ecological/environmental research: a review, some

https://ebird.org/data/download
https://ebird.org/data/download
https://doi.org/10.5281/zenodo.3402307
https://doi.org/10.5281/zenodo.3402307
http://dx.doi.org/10.1111/1365-2664.12316
http://dx.doi.org/10.1111/j.1472-4642.2010.00723.x
http://dx.doi.org/10.1016/j.tree.2011.02.012
http://dx.doi.org/10.1111/1365-2664.12777
http://dx.doi.org/10.1111/1365-2664.12777
http://dx.doi.org/10.1016/S0169-5347(01)02205-4
http://dx.doi.org/10.1016/S0169-5347(01)02205-4
http://dx.doi.org/10.1111/j.0906-7590.2007.04627.x
http://dx.doi.org/10.1111/j.1442-9993.2011.02351.x
http://dx.doi.org/10.1016/j.tree.2010.06.016
http://dx.doi.org/10.1002/ecy.1660
http://dx.doi.org/10.1111/j.1365-2664.2009.01724.x
http://dx.doi.org/10.1111/j.1755-263X.2010.00125.x
http://dx.doi.org/10.1016/j.gecco.2018.e00389
http://dx.doi.org/10.1016/j.gecco.2018.e00389
http://dx.doi.org/10.1111/jofo.12121
http://dx.doi.org/10.1111/jofo.12121
http://dx.doi.org/10.1016/j.biocon.2014.10.021
http://dx.doi.org/10.1016/j.biocon.2016.04.031
http://dx.doi.org/10.1016/j.biocon.2016.04.031
http://dx.doi.org/10.1016/j.biocon.2015.02.023
http://dx.doi.org/10.1016/j.biocon.2015.02.023
http://dx.doi.org/10.1016/j.biocon.2014.11.022
http://dx.doi.org/10.1111/j.1752-4598.2010.00117.x
http://dx.doi.org/10.1111/j.1752-4598.2010.00117.x
http://dx.doi.org/10.1016/j.biocon.2016.09.004
http://dx.doi.org/10.1016/j.biocon.2016.09.004
http://dx.doi.org/10.1016/bs.aecr.2018.06.003
http://dx.doi.org/10.1016/bs.aecr.2018.06.003
http://dx.doi.org/10.1371/journal.pone.0106508
http://dx.doi.org/10.1093/biosci/biu217
http://dx.doi.org/10.1890/110294
http://dx.doi.org/10.1890/110294
http://dx.doi.org/10.1371/journal.pone.0172579
http://dx.doi.org/10.1093/biosci/biz010
http://dx.doi.org/10.1093/biosci/biz010
http://dx.doi.org/10.1186/s40064-016-3583-5
http://dx.doi.org/10.1186/s40064-016-3583-5
http://dx.doi.org/10.1371/journal.pone.0139600
http://dx.doi.org/10.1371/journal.pone.0139600
http://dx.doi.org/10.1371/journal.pbio.1000385
http://dx.doi.org/10.1016/j.biocon.2013.07.037
http://dx.doi.org/10.1007/s00484-012-0598-7
http://dx.doi.org/10.1007/s00484-012-0598-7
http://dx.doi.org/10.1007/s13280-015-0710-4
http://dx.doi.org/10.1111/ddi.12477
http://dx.doi.org/10.1371/journal.pbio.3000357


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20191487

8
observations and a look to the future. Biol. Rev. 85,
247–266. (doi:10.1111/j.1469-185X.2009.00098.x)

35. Etienne RS. 2005 A new sampling formula for
neutral biodiversity. Ecol. Lett. 8, 253–260. (doi:10.
1111/j.1461-0248.2004.00717.x)

36. Moreno CE, Halffter G. 2000 Assessing the
completeness of bat biodiversity inventories using
species accumulation curves. J. Appl. Ecol. 37,
149–158. (doi:10.1046/j.1365-2664.2000.00483.x)

37. Colwell RK, Coddington JA. 1994 Estimating
terrestrial biodiversity through extrapolation. Phil.
Trans. R. Soc. Lond. B 345, 101–118. (doi:10.1098/
rstb.1994.0091)

38. Longino JT, Colwell RK. 1997 Biodiversity
assessment using structured inventory: capturing
the ant fauna of a tropical rain forest. Ecol. Appl. 7,
1263–1277. (doi:10.1890/1051-0761(1997)
007[1263:BAUSIC]2.0.CO;2)

39. Ferrarini A. 2012 Biodiversity optimal sampling: an
algorithmic solution. Proc. Int. Acad. Ecol. Environ.
Sci. 2, 50.

40. Chase JM, Knight TM. 2013 Scale-dependent effect
sizes of ecological drivers on biodiversity: why
standardised sampling is not enough. Ecol. Lett. 16,
17–26. (doi:10.1111/ele.12112)

41. Parrish JK, Burgess H, Weltzin JF, Fortson L, Wiggins
A, Simmons B. 2018 Exposing the science in citizen
science: fitness to purpose and intentional design.
Integr. Comp. Biol. 58, 150–160. (doi:10.1093/icb/
icy032)

42. Isaac NJ, van Strien AJ, August TA, de Zeeuw MP, Roy
DB. 2014 Statistics for citizen science: extracting signals
of change from noisy ecological data. Methods Ecol.
Evol. 5, 1052–1060. (doi:10.1111/2041-210X.12254)

43. Robinson OJ, Ruiz-Gutierrez V, Fink D. 2018
Correcting for bias in distribution modelling for rare
species using citizen science data. Divers. Distrib. 24,
460–472. (doi:10.1111/ddi.12698)

44. Wiggins A, Crowston K. 2011 From conservation to
crowdsourcing: a typology of citizen science. In 2011
44th Hawaii International Conference on System
Sciences, Kauai, HI, pp. 1–10. Piscataway, NJ: IEEE.

45. Fithian W, Elith J, Hastie T, Keith DA. 2015 Bias
correction in species distribution models: pooling
survey and collection data for multiple species.
Methods Ecol. Evol. 6, 424–438. (doi:10.1111/2041-
210X.12242)

46. Hochachka WM, Fink D, Hutchinson RA, Sheldon D,
Wong WK, Kelling S. 2012 Data-intensive science
applied to broad-scale citizen science. Trends Ecol.
Evol. 27, 130–137. (doi:10.1016/j.tree.2011.11.006)

47. Bradsworth N, White JG, Isaac B, Cooke R. 2017
Species distribution models derived from citizen
science data predict the fine scale movements of
owls in an urbanizing landscape. Biol. Conserv. 213,
27–35. (doi:10.1016/j.biocon.2017.06.039)

48. van Strien AJ, van Swaay CA, Termaat T. 2013
Opportunistic citizen science data of animal species
produce reliable estimates of distribution trends if
analysed with occupancy models. J. Appl. Ecol. 50,
1450–1458. (doi:10.1111/1365-2664.12158)

49. Tiago P, Pereira HM, Capinha C. 2017 Using citizen
science data to estimate climatic niches and species
distributions. Basic Appl. Ecol. 20, 75–85. (doi:10.
1016/j.baae.2017.04.001)

50. Stuart-Smith RD et al. 2017 Assessing national
biodiversity trends for rocky and coral reefs through
the integration of citizen science and scientific
monitoring programs. Bioscience 67, 134–146.
(doi:10.1093/biosci/biw180)

51. La Sorte FA, Tingley MW, Hurlbert AH. 2014 The
role of urban and agricultural areas during avian
migration: an assessment of within-year temporal
turnover. Glob. Ecol. Biogeogr. 23, 1225–1234.
(doi:10.1111/geb.12199)

52. Supp S, La Sorte FA, Cormier TA, Lim MC, Powers
DR, Wethington SM, Goetz S, Graham CH. 2015
Citizen-science data provides new insight into
annual and seasonal variation in migration patterns.
Ecosphere 6, 1–19. (doi:10.1890/ES14-00174.1)

53. Pocock MJ, Roy HE, Fox R, Ellis WN, Botham M.
2017 Citizen science and invasive alien species:
predicting the detection of the oak processionary
moth Thaumetopoea processionea by moth
recorders. Biol. Conserv. 208, 146–154. (doi:10.
1890/es14-00290.1)

54. Grason EW, McDonald PS, Adams J, Litle K, Apple
JK, Pleus A. 2018 Citizen science program detects
range expansion of the globally invasive European
green crab in Washington State (USA). Manag.
Biol. Invasion. 9, 39–47. (doi:10.3391/mbi.
2018.9.1.04)

55. Bahls LL. 2014 New diatoms from the American
West contribute to citizen science. Proc. Acad. Nat.
Sci. Philadelphia 163, 61–85. (doi:10.1635/053.163.
0109)

56. Drury JP, Barnes M, Finneran AE, Harris M, Grether
GF. 2019 Continent-scale phenotype mapping using
citizen scientists’ photographs. Ecography 42,
1436–1445. (doi:10.1111/ecog.04469)

57. Baillie JE et al. 2008 Toward monitoring global
biodiversity. Conserv. Lett. 1, 18–26. (doi:10.1111/j.
1755-263X.2008.00009.x)

58. Walker J, Taylor P. 2017 Using eBird data to model
population change of migratory bird species. Avian
Conserv. Ecol. 12, 4.

59. Kery M, Royle JA, Schmid H, Schaub M, Volet B,
Haefliger G, Zbinden N. 2010 Site-occupancy
distribution modeling to correct population-trend
estimates derived from opportunistic observations.
Conserv. Biol. 24, 1388–1397. (doi:10.1111/j.1523-
1739.2010.01479.x)

60. Horns JJ, Adler FR, Şekercioğlu ÇH. 2018 Using
opportunistic citizen science data to estimate avian
population trends. Biol. Conserv. 221, 151–159.
(doi:10.1016/j.biocon.2018.02.027)

61. van Strien AJ et al. 2013 Occupancy modelling as a
new approach to assess supranational trends using
opportunistic data: a pilot study for the damselfly
Calopteryx splendens. Biodivers. Conserv. 22,
673–686. (doi:10.1007/s10531-013-0436-1)

62. Pagel J, Anderson BJ, O’Hara RB, Cramer W, Fox R,
Jeltsch F, Roy DB, Thomas CD, Schurr FM. 2014
Quantifying range-wide variation in population
trends from local abundance surveys and
widespread opportunistic occurrence records.
Methods Ecol. Evol. 5, 751–760. (doi:10.1111/2041-
210X.12221)

63. Silvertown J. 2009 A new dawn for citizen science.
Trends Ecol. Evol. 24, 467–471. (doi:10.1016/j.tree.
2009.03.017)

64. Soroye P, Ahmed N, Kerr JT. 2018 Opportunistic
citizen science data transform understanding of
species distributions, phenology, and diversity
gradients for global change research. Glob.
Change Biol. 24, 5281–5921. (doi:10.1111/gcb.
14358)

65. McKinley DC et al. 2017 Citizen science can
improve conservation science, natural resource
management, and environmental protection. Biol.
Conserv. 208, 15–28. (doi:10.1016/j.biocon.2016.
05.015)

66. Mair L, Ruete A. 2016 Explaining spatial variation in
the recording effort of citizen science data across
multiple taxa. PLoS ONE 11, e0147796. (doi:10.
1371/journal.pone.0147796)

67. Ward DF. 2014 Understanding sampling and
taxonomic biases recorded by citizen scientists.
J. Insect Conserv. 18, 753–756. (doi:10.1007/
s10841-014-9676-y)

68. R Core Team. 2018 R: a language and environment
for statistical computing. Vienna, Austria. See
https://www.R-project.org/.

69. Wickham H. 2017 tidyverse: easily install and load
the ‘Tidyverse’; 2017. R package version 1.2.1. See
https://CRAN.R-project.org/package=tidyverse.

70. Wickham H. 2016 Ggplot2: elegant graphics for data
analysis. New York, NY: Springer. See http://
ggplot2.org.

71. Pebesma E. 2018 sf: Simple Features for R; 2018.
R package version 0.6-3. See https://CRAN.R-project.
org/package=sf.

72. Sullivan BL, Wood CL, Iliff MJ, Bonney RE, Fink D,
Kelling S. 2009 eBird: a citizen-based bird
observation network in the biological sciences. Biol.
Conserv. 142, 2282–2292. (doi:10.1016/j.biocon.
2009.05.006)

73. Sullivan BL et al. 2014 The eBird enterprise: an
integrated approach to development and
application of citizen science. Biol. Conserv. 169,
31–40. (doi:10.1016/j.biocon.2013.11.003)

74. Gilfedder M, Robinson CJ, Watson JE, Campbell TG,
Sullivan BL, Possingham HP. 2019 Brokering trust in
citizen science. Soc. Nat. Resour. 32, 292–302.
(doi:10.1080/08941920.2018.1518507)

75. Callaghan C, Lyons M, Martin J, Major R, Kingsford
R. 2017 Assessing the reliability of avian biodiversity
measures of urban greenspaces using eBird citizen
science data. Avian Conserv. Ecol. 12, 12. (doi:10.
5751/ACE-01104-120212)

76. Johnston A, Fink D, Hochachka WM, Kelling S. 2018
Estimates of observer expertise improve species
distributions from citizen science data. Methods Ecol.
Evol. 9, 88–97. (doi:10.1111/2041-210X.12838)

77. Szabo JK, Vesk PA, Baxter PW, Possingham HP. 2010
Regional avian species declines estimated from
volunteer-collected long-term data using List
Length Analysis. Ecol. Appl. 20, 2157–2169. (doi:10.
1890/09-0877.1)

http://dx.doi.org/10.1111/j.1469-185X.2009.00098.x
http://dx.doi.org/10.1111/j.1461-0248.2004.00717.x
http://dx.doi.org/10.1111/j.1461-0248.2004.00717.x
http://dx.doi.org/10.1046/j.1365-2664.2000.00483.x
http://dx.doi.org/10.1098/rstb.1994.0091
http://dx.doi.org/10.1098/rstb.1994.0091
http://dx.doi.org/10.1890/1051-0761(1997)007[1263:BAUSIC]2.0.CO;2
http://dx.doi.org/10.1890/1051-0761(1997)007[1263:BAUSIC]2.0.CO;2
http://dx.doi.org/10.1111/ele.12112
http://dx.doi.org/10.1093/icb/icy032
http://dx.doi.org/10.1093/icb/icy032
http://dx.doi.org/10.1111/2041-210X.12254
http://dx.doi.org/10.1111/ddi.12698
http://dx.doi.org/10.1111/2041-210X.12242
http://dx.doi.org/10.1111/2041-210X.12242
http://dx.doi.org/10.1016/j.tree.2011.11.006
http://dx.doi.org/10.1016/j.biocon.2017.06.039
http://dx.doi.org/10.1111/1365-2664.12158
http://dx.doi.org/10.1016/j.baae.2017.04.001
http://dx.doi.org/10.1016/j.baae.2017.04.001
http://dx.doi.org/10.1093/biosci/biw180
http://dx.doi.org/10.1111/geb.12199
http://dx.doi.org/10.1890/ES14-00174.1
http://dx.doi.org/10.1890/es14-00290.1
http://dx.doi.org/10.1890/es14-00290.1
http://dx.doi.org/10.3391/mbi.2018.9.1.04
http://dx.doi.org/10.3391/mbi.2018.9.1.04
http://dx.doi.org/10.1635/053.163.0109
http://dx.doi.org/10.1635/053.163.0109
http://dx.doi.org/10.1111/ecog.04469
http://dx.doi.org/10.1111/j.1755-263X.2008.00009.x
http://dx.doi.org/10.1111/j.1755-263X.2008.00009.x
http://dx.doi.org/10.1111/j.1523-1739.2010.01479.x
http://dx.doi.org/10.1111/j.1523-1739.2010.01479.x
http://dx.doi.org/10.1016/j.biocon.2018.02.027
http://dx.doi.org/10.1007/s10531-013-0436-1
http://dx.doi.org/10.1111/2041-210X.12221
http://dx.doi.org/10.1111/2041-210X.12221
http://dx.doi.org/10.1016/j.tree.2009.03.017
http://dx.doi.org/10.1016/j.tree.2009.03.017
http://dx.doi.org/10.1111/gcb.14358
http://dx.doi.org/10.1111/gcb.14358
http://dx.doi.org/10.1016/j.biocon.2016.05.015
http://dx.doi.org/10.1016/j.biocon.2016.05.015
http://dx.doi.org/10.1371/journal.pone.0147796
http://dx.doi.org/10.1371/journal.pone.0147796
http://dx.doi.org/10.1007/s10841-014-9676-y
http://dx.doi.org/10.1007/s10841-014-9676-y
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse
http://ggplot2.org
http://ggplot2.org
http://ggplot2.org
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf
http://dx.doi.org/10.1016/j.biocon.2009.05.006
http://dx.doi.org/10.1016/j.biocon.2009.05.006
http://dx.doi.org/10.1016/j.biocon.2013.11.003
http://dx.doi.org/10.1080/08941920.2018.1518507
http://dx.doi.org/10.5751/ACE-01104-120212
http://dx.doi.org/10.5751/ACE-01104-120212
http://dx.doi.org/10.1111/2041-210X.12838
http://dx.doi.org/10.1890/09-0877.1
http://dx.doi.org/10.1890/09-0877.1


royalsocietypublishing.org/journal/rs

9
78. Cook RD. 1977 Detection of influential observation
in linear regression. Technometrics 19, 15–18.
(doi:10.2307/1268249)

79. Barlow K, Briggs P, Haysom K, Hutson A, Lechiara N,
Racey P et al. 1980 Regression diagnostics:
identifying influential data and sources of
collinearity. New York, NY: John Wiley & Sons.

80. Bollinger G. 1981 Regression diagnostics: identifying
influential data and sources of collinearity. Los
Angeles, CA: Sage Publications.

81. Robinson D. 2018 broom: convert statistical analysis
objects into tidy data frames; R package version
0.4.4. See https://CRAN.R-project.org/package=
broom.

82. Rowley JJL, Callaghan CT, Cutajar T, Portway C,
Potter K, Mahony S. 2019 FrodID: citizen scientists
provide validated biodiversity data on Australia’s
frogs. Herpetol. Conserv. Biol. 14, 155–170.

83. Xue Y, Davies I, Fink D, Wood C, Gomes CP. 2016
Avicaching: A two stage game for bias reduction in
citizen science. In Proceedings of the 2016
International Conference on Autonomous Agents &
Multiagent Systems, pp. 776–785. International
Foundation for Autonomous Agents and Multiagent
Systems. See http://ifaamas.org/Proceedings/
aamas2016.

84. Wood C, Sullivan B, Iliff M, Fink D, Kelling S. 2011
eBird: engaging birders in science and conservation.
PLoS Biol. 9, e1001220. (doi:10.1371/journal.pbio.
1001220)

85. Sharpley R. 2006 Ecotourism: a consumption
perspective. J. Ecotourism 5, 7–22. (doi:10.1080/
14724040608668444)

86. Crawley M, Harral J. 2001 Scale dependence in
plant biodiversity. Science 291, 864–868. (doi:10.
1126/science.291.5505.864)
 p
b
Proc.R.Soc.B
286:20191487

http://dx.doi.org/10.2307/1268249
https://CRAN.R-project.org/package=broom
https://CRAN.R-project.org/package=broom
https://CRAN.R-project.org/package=broom
http://ifaamas.org/Proceedings/aamas2016
http://ifaamas.org/Proceedings/aamas2016
http://ifaamas.org/Proceedings/aamas2016
http://dx.doi.org/10.1371/journal.pbio.1001220
http://dx.doi.org/10.1371/journal.pbio.1001220
http://dx.doi.org/10.1080/14724040608668444
http://dx.doi.org/10.1080/14724040608668444
http://dx.doi.org/10.1126/science.291.5505.864
http://dx.doi.org/10.1126/science.291.5505.864

	Optimizing future biodiversity sampling by citizen scientists
	Introduction
	Methods
	Trend detection model
	Statistical leverage
	Parameter calculation

	Results and discussion
	Tests of predictions
	Applications of our predictions
	Conclusions
	Data accessibility
	Authors' contributions
	Competing interests
	Funding

	Acknowledgements
	References


